research

A Bi-Hamiltonian Structure for the Integrable, Discrete Non-Linear Schrodinger System

Abstract

This paper shows that the Ablowitz-Ladik hierarchy of equations (a well-known integrable discretization of the Non-linear Schrodinger system) can be explicitly viewed as a hierarchy of commuting flows which: (a) are Hamiltonian with respect to both a standard, local Poisson operator J and a new non-local, skew, almost Poisson operator K, on the appropriate space; (b) can be recursively generated from a recursion operator R (obtained by composing K and the inverse of J.) In addition, the proof of these facts relies upon two new pivotal resolvent identities which suggest a general method for uncovering bi-Hamiltonian structures for other families of discrete, integrable equations.Comment: 33 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019