CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Biceps brachii muscle hardness assessed by a push-in meter in comparison to ultrasound strain elastography
Authors
Takayuki Inami
Mitsuyoshi Murayama
+3 more
Kazunori Nosaka
Norihiro Shima
Tsugutake Yoneda
Publication date
1 January 2020
Publisher
Edith Cowan University, Research Online, Perth, Western Australia
Abstract
© 2020, The Author(s). This study investigated the relationship between push-in meter (PM) and ultrasound strain elastography (USE) for biceps brachii (BB) muscle hardness. BB hardness of 21 young men was assessed by PM and USE during rest and isometric contractions of six different intensities (15, 30, 45, 60, 75, 90% of maximal voluntary contraction: MVC) at 30°, 60° and 90° elbow flexion. Muscle hardness (E) was calculated from the force–displacement relationship in PM, and strain ratio (SR) between an acoustic coupler (elastic modulus: 22.6 kPa) and different regions of interest (ROIs) in BB was calculated and converted to Young’s modulus (YM) in USE. In resting muscle, E was 26.1 ± 6.4 kPa, and SR and YM for the whole BB was 0.88 ± 0.4 and 30.8 ± 12.8 kPa, respectively. A significant (p \u3c 0.01) correlation was evident between E and logarithmical transformed SR (LTSR) for the ROI of whole BB (r = − 0.626), and E and converted YM (r = 0.615). E increased approximately ninefold from resting to 90% MVC, and E and LTSR (r = − 0.732 to − 0.880), and E and converted YM for the SR above 0.1 were correlated (r = 0.599–0.768, p \u3c 0.01). These results suggest that muscle hardness values obtained by PM and USE are comparable
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Research Online @ ECU
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:ro.ecu.edu.au:ecuworkspost...
Last time updated on 03/03/2021