Convergence rates of Markov chains have been widely studied in recent years.
In particular, quantitative bounds on convergence rates have been studied in
various forms by Meyn and Tweedie [Ann. Appl. Probab. 4 (1994) 981-1101],
Rosenthal [J. Amer. Statist. Assoc. 90 (1995) 558-566], Roberts and Tweedie
[Stochastic Process. Appl. 80 (1999) 211-229], Jones and Hobert [Statist. Sci.
16 (2001) 312-334] and Fort [Ph.D. thesis (2001) Univ. Paris VI]. In this
paper, we extend a result of Rosenthal [J. Amer. Statist. Assoc. 90 (1995)
558-566] that concerns quantitative convergence rates for time-homogeneous
Markov chains. Our extension allows us to consider f-total variation distance
(instead of total variation) and time-inhomogeneous Markov chains. We apply our
results to simulated annealing.Comment: Published at http://dx.doi.org/10.1214/105051604000000620 in the
Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute
of Mathematical Statistics (http://www.imstat.org