Consider a continuous-time binary branching process conditioned to have
population size n at some time t, and with a chance p for recording each
extinct individual in the process. Within the family tree of this process, we
consider the smallest subtree containing the genealogy of the extant
individuals together with the genealogy of the recorded extinct individuals. We
introduce a novel representation of such subtrees in terms of a point-process,
and provide asymptotic results on the distribution of this point-process as the
number of extant individuals increases. We motivate the study within the scope
of a coherent analysis for an a priori model for macroevolution.Comment: 30 page