We first review some invariant theoretic results about the finite subgroups
of SU(2) in a quick algebraic way by using the McKay correspondence and quantum
affine Cartan matrices. By the way it turns out that some parameters
(a,b,h;p,q,r) that one usually associates with such a group and hence with a
simply-laced Coxeter-Dynkin diagram have a meaningful definition for the
non-simply-laced diagrams, too, and as a byproduct we extend Saito's formula
for the determinant of the Cartan matrix to all cases. Returning to invariant
theory we show that for each irreducible representation i of a binary
tetrahedral, octahedral, or icosahedral group one can find a homomorphism into
a finite complex reflection group whose defining reflection representation
restricts to i.Comment: 19 page