In this note we will discuss a new reflection principle which follows from
the Proper Forcing Axiom. The immediate purpose will be to prove that the
bounded form of the Proper Forcing Axiom implies both that 2^omega = omega_2
and that L(P(omega_1)) satisfies the Axiom of Choice. It will also be
demonstrated that this reflection principle implies that combinatorial
principle Square(kappa) fails for all regular kappa > omega_1.Comment: 11 page