Role of interface morphology on the martensitic transformation in pure Fe

Abstract

Using classical molecular dynamics simulations, we study austenite to ferrite phase transformation in iron, focusing on the role of interface morphology. We compare two different morphologies; a \textit{flat} interface in which the two phases are joined according to Nishiyama-Wasserman orientation relationship vs. a \textit{ledged} one, having steps similar to the vicinal surface. We identify the atomic displacements along a misfit dislocation network at the interface leading to the phase transformation. In case of \textit{ledged} interface, stacking faults are nucleated at the steps, which hinder the interface motion, leading to a lower mobility of the inter-phase boundary, than that of flat interface. Interestingly, we also find the temperature dependence of the interface mobility to show opposite trends in case of \textit{flat} vs. \textit{ledged} boundary. We believe that our study is going to present a unified and comprehensive view of martensitic transformation in iron with different interface morphology, which is lacking at present, as \textit{flat} and \textit{ledged} interfaces are treated separately in the existing literature.Comment: 10 pages, 9 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions