On Extensions, Lie-Poisson Systems, and Dissipations

Abstract

On the dual space of \textit{extended structure}, equations governing the collective motion of two mutually interacting Lie-Poisson systems are derived. By including a twisted 2-cocycle term, this novel construction is providing the most general realization of (de)coupling of Lie-Poisson systems. A double cross sum (matched pair) of 2-cocycle extensions are constructed. The conditions are determined for this double cross sum to be a 2-cocycle extension by itself. On the dual spaces, Lie-Poisson equations are computed. We complement the discussion by presenting a double cross sum of some symmetric brackets, such as double bracket, Cartan-Killing bracket, Casimir dissipation bracket, and Hamilton dissipation bracket. Accordingly, the collective motion of two mutually interacting irreversible dynamics, as well as mutually interacting metriplectic flows, are obtained. The theoretical results are illustrated in three examples. As an infinite-dimensional physical model, decompositions of the BBGKY hierarchy are presented. As finite-dimensional examples, the coupling of two Heisenberg algebras and coupling of two copies of 3D3D dynamics are studied

    Similar works

    Full text

    thumbnail-image