Enhancing chaos in multistability regions of Duffing map for an asymmetric image encryption algorithm

Abstract

We investigate the dynamics of a two-dimensional chaotic Duffing map which exhibits the occurrence of coexisting chaotic attractors as well as periodic orbits with a typical set of system parameters. Such unusual behaviors in low-dimensional maps is inadmissible especially in the applications of chaos based cryptography. To this end, the Sine-Cosine chaotification technique is used to propose a modified Duffing map in enhancing its chaos complexity in the multistable regions. Based on the enhanced Duffing map, a new asymmetric image encryption algorithm is developed with the principles of confusion and diffusion. While in the former, hyperchaotic sequences are generated for scrambling of plain-image pixels, the latter is accomplished by the elliptic curves, S-box and hyperchaotic sequences. Simulation results and security analysis reveal that the proposed encryption algorithm can effectively encrypt and decrypt various kinds of digital images with a high-level security.Comment: 15 pages, 15 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions