Past, present and future distributions of Oriental beech (Fagus orientalis) under climate change projections

Abstract

Species distribution models can help predicting range shifts under climate change. The aimof this study is to investigate the late Quaternary distribution of Oriental beech (Fagus orientalis)and to project future distribution ranges under different climate change scenarios usinga combined palaeobotanical, phylogeographic, and modelling approach. Five species distributionmodelling algorithms under the R-package ‘biomod2‘were applied to occurrence dataof Fagus orientalis to predict distributions under present, past (Last Glacial Maximum, 21ka, Mid-Holocene, 6 ka), and future climatic conditions with different scenarios obtainedfrom MIROC-ESM and CCSM4 global climate models. Distribution models were comparedto palaeobotanical and phylogeographic evidence. Pollen data indicate northern Turkey andthe western Caucasus as refugia for Oriental beech during the Last Glacial Maximum.Although pollen records are missing, molecular data point to Last Glacial Maximum refugiain northern Iran. For the mid-Holocene, pollen data support the presence of beech in thestudy region. Species distribution models predicted present and Last Glacial Maximum distributionof Fagus orientalis moderately well yet underestimated mid-Holocene ranges.Future projections under various climate scenarios indicate northern Iran and the Caucasusregion as major refugia for Oriental beech. Combining palaeobotanical, phylogeographicand modelling approaches is useful when making projections about distributions of plants.Palaeobotanical and molecular evidence reject some of the model projections. Nevertheless,the projected range reduction in the Caucasus region and northern Iran highlights theirimportance as long-term refugia, possibly related to higher humidity, stronger environmentaland climatic heterogeneity and strong vertical zonation of the forest vegetation

    Similar works