research

Strong memoryless times and rare events in Markov renewal point processes

Abstract

Let W be the number of points in (0,t] of a stationary finite-state Markov renewal point process. We derive a bound for the total variation distance between the distribution of W and a compound Poisson distribution. For any nonnegative random variable \zeta, we construct a ``strong memoryless time'' \hat \zeta such that \zeta-t is exponentially distributed conditional on {\hat \zeta\leq t, \zeta>t}, for each t. This is used to embed the Markov renewal point process into another such process whose state space contains a frequently observed state which represents loss of memory in the original process. We then write W as the accumulated reward of an embedded renewal reward process, and use a compound Poisson approximation error bound for this quantity by Erhardsson. For a renewal process, the bound depends in a simple way on the first two moments of the interrenewal time distribution, and on two constants obtained from the Radon-Nikodym derivative of the interrenewal time distribution with respect to an exponential distribution. For a Poisson process, the bound is 0.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Probability (http://www.imstat.org/aop/) at http://dx.doi.org/10.1214/00911790400000005

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019