research

Homotopy decompositions and K-theory of Bott towers

Abstract

We describe Bott towers as sequences of toric manifolds M^k, and identify the omniorientations which correspond to their original construction as toric varieties. We show that the suspension of M^k is homotopy equivalent to a wedge of Thom complexes, and display its complex K-theory as an algebra over the coefficient ring. We extend the results to KO-theory for several families of examples, and compute the effects of the realification homomorphism; these calculations breathe geometric life into Bahri and Bendersky's recent analysis of the Adams Spectral Sequence. By way of application we investigate stably complex structures on M^k, identifying those which arise from omniorientations and those which are almost complex. We conclude with observations on the role of Bott towers in complex cobordism theory.Comment: 26 page

    Similar works