In all but special circumstances, measurements of time-dependent processes
reflect internal structures and correlations only indirectly. Building
predictive models of such hidden information sources requires discovering, in
some way, the internal states and mechanisms. Unfortunately, there are often
many possible models that are observationally equivalent. Here we show that the
situation is not as arbitrary as one would think. We show that generators of
hidden stochastic processes can be reduced to a minimal form and compare this
reduced representation to that provided by computational mechanics--the
epsilon-machine. On the way to developing deeper, measure-theoretic foundations
for the latter, we introduce a new two-step reduction process. The first step
(internal-event reduction) produces the smallest observationally equivalent
sigma-algebra and the second (internal-state reduction) removes sigma-algebra
components that are redundant for optimal prediction. For several classes of
stochastic dynamical systems these reductions produce representations that are
equivalent to epsilon-machines.Comment: 12 pages, 4 figures; 30 citations; Updates at
http://www.santafe.edu/~cm