Abstract

In 1974, Gehring posed the problem of minimizing the length of two linked curves separated by unit distance. This constraint can be viewed as a measure of thickness for links, and the ratio of length over thickness as the ropelength. In this paper we refine Gehring's problem to deal with links in a fixed link-homotopy class: we prove ropelength minimizers exist and introduce a theory of ropelength criticality. Our balance criterion is a set of necessary and sufficient conditions for criticality, based on a strengthened, infinite-dimensional version of the Kuhn--Tucker theorem. We use this to prove that every critical link is C^1 with finite total curvature. The balance criterion also allows us to explicitly describe critical configurations (and presumed minimizers) for many links including the Borromean rings. We also exhibit a surprising critical configuration for two clasped ropes: near their tips the curvature is unbounded and a small gap appears between the two components. These examples reveal the depth and richness hidden in Gehring's problem and our natural extension.Comment: This is the version published by Geometry & Topology on 14 November 200

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019