Performance Of IEEE 802.11 OFDM With Multiple Frequency Transforms And Pulse Shaping Schemes

Abstract

Orthogonal Frequency Division Multiplexing (OFDM) is employed in various communication systems such as the IEEE 802.11 wireless standards, in which both frequency transform, Fast Fourier Transform (FFT) and pulse shaping filter, Square Root Raised Cosine (SRRC) are used. The main contribution of this paper is the analysis of the performance of different combinations of frequency transforms and pulse shaping schemes for the 802.11n standard. The frequency transforms which have been used are: Fast Fourier Transforms (FFT), Discrete Wavelet Transforms (DWT) and Discrete Hartley Transform (DHT). The pulse shaping filters are the Raised Cosine (RC), SRRC and Flipped Exponential Pulse (FEXP). The IEEE 802.11 WLAN system with Additive White Gaussian (AWGN) has been used as the modelling environment. The results showed that the DWT-based OFDM system has a better performance than the DHT and FFT schemes and upon comparing the pulse shaping filters, the SRRC filter outperforms the FEXP and RC filters

    Similar works