research

Hodge-DeRham theory with degenerating coefficients

Abstract

Let L{\cal L} be a local system on the complement XX^{\star} of a normal crossing divisor (NCD) Y Y in a smooth analytic variety XX and let j:X=XYX j: X^{\star} = X - Y \to X denotes the open embedding. The purpose of this paper is to describe a weight filtration WW on the direct image jL{\bf j}_{\star}{\cal L} and in case a morphism f:XDf: X \to D to a complex disc is given with Y=f1(0)Y = f^{-1}(0), the weight filtration on the complex of nearby cocycles Ψf(L)\Psi_f ({\cal L}) on YY. A comparison theorem shows that the filtration coincides with the weight defined by the logarithm of the monodromy and provides the link with various results on the subject

    Similar works