thesis

Petrogenesis of the phase 1 gabbro-diorite of the Miocene Mt Perkins Pluton, northwest Arizona: Implications for the role of mantle-derived mafic magmas in calc-alkaline magma evolution

Abstract

Mafic magmas play a significant role in the evolution of calc-alkaline magma systems in convergent and extensional environments. The Miocene Mt. Perkins pluton, northwestern Arizona, was emplaced as a series of four discrete magma pulses into a country rock of Precambrian orthogneiss. Phase 1 is a gabbro-diorite containing four rock groups: olivine-clinopyroxene cumulates, hornblende-plagioclase cumulates, homblende gabbro, and quartz diorite. Stage one of phases 2 and 3 evolved by a process of fractional crystallization of an asthenospheric mantle derived mafic magma and magma mixing with an upper crustal granitic magma. Phase 1 magmas evolved by fractional crystallization (required by the presence of cumulates) of an asthenospheric mantle derived mafic magma and contamination by an asthenospheric-lithospheric mantle derived basaltic magma at depth and the orthogneiss at emplacement level. Phases 1, 2, and 3 share a common asthenospheric mantle derived magma. Mafic mantle derived melts are generated continuously throughout magma system evolution

    Similar works