Angular emission distribution of O 1s photoelectrons of uniaxially oriented methanol

Abstract

The angular distribution of O 1s photoelectrons emitted from uniaxially oriented methanol is studied experimentally and theoretically. We employed circularly polarized photons of an energy of hν = 550 eV for our investigations. We measured the three-dimensional photoelectron angular distributions of methanol, with the CH3–OH axis oriented in the polarization plane, by means of cold target recoil ion momentum spectroscopy. The experimental results are interpreted by single active electron calculations performed with the single center method. A comparative theoretical study of the respective molecular-frame angular distributions of O 1s photoelectrons of CO, performed for the same photoelectron kinetic energy and for a set of different internuclear distances, allows for disentangling the role of internuclear distance and the hydrogen atoms of methanol as compared to carbon monoxide

    Similar works

    Full text

    thumbnail-image

    Available Versions