We show that the symmetry groups of the cut cone Cut(n) and the metric cone
Met(n) both consist of the isometries induced by the permutations on {1,...,n};
that is, Is(Cut(n))=Is(Met(n))=Sym(n) for n>4. For n=4 we have
Is(Cut(4))=Is(Met(4))=Sym(3)xSym(4).
This is then extended to cones containing the cuts as extreme rays and for
which the triangle inequalities are facet-inducing. For instance,
Is(Hyp(n))=Sym(n) for n>4, where Hyp(n) denotes the hypermetric cone.Comment: 8 pages, LaTeX, 2 postscript figure