thesis

Inverse and variable structure trajectory control of a flexible robotic manipulator

Abstract

This thesis introduces two schemes that control the end effector trajectory and stabilize a two-link flexible robotic arm. They are (i) The Inverse Trajectory Control scheme and (ii) The Variable Structure System (VSS) scheme; The Inverse Trajectory Control scheme develops a control law based on the inversion of an input-output map. The stable maneuver of the arm depends on the stability of the zero dynamics of the system. A linear stabilizer is designed for the final capture of the terminal state and stabilization of the elastic modes; The second scheme incorporates a Variable Structure Control law which includes robustness in its design. A discontinuous output control law is derived which accomplishes the desired trajectory tracking of the output. This control scheme involves two phases, the \u27reaching phase\u27 and the \u27sliding phase\u27; Simulation results are presented to show that large maneuvers can be performed in the presence of payload uncertainty. (Abstract shortened with permission of author.)

    Similar works