research

Geometric non-vanishing

Abstract

We consider LL-functions attached to representations of the Galois group of the function field of a curve over a finite field. Under mild tameness hypotheses, we prove non-vanishing results for twists of these LL-functions by characters of order prime to the characteristic of the ground field and by certain representations with solvable image. We also allow local restrictions on the twisting representation at finitely many places. Our methods are geometric, and include the Riemann-Roch theorem, the cohomological interpretation of LL-functions, and some monodromy calculations of Katz. As an application, we prove a result which allows one to deduce the conjecture of Birch and Swinnerton-Dyer for non-isotrivial elliptic curves over function fields whose LL-function vanishes to order at most 1 from a suitable Gross-Zagier formula.Comment: 46 pages. New version corrects minor errors. To appear in Inventiones Mat

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019