Given a basis for a polynomial ring, the coefficients in the expansion of a
product of some of its elements in terms of this basis are called linearization
coefficients. These coefficients have combinatorial significance for many
classical families of orthogonal polynomials. Starting with a stochastic
process and using the stochastic measures machinery introduced by Rota and
Wallstrom, we calculate and give an interpretation of linearization
coefficients for a number of polynomial families. The processes involved may
have independent, freely independent or q-independent increments. The use of
noncommutative stochastic processes extends the range of applications
significantly, allowing us to treat Hermite, Charlier, Chebyshev, free Charlier
and Rogers and continuous big q-Hermite polynomials. We also show that the
q-Poisson process is a Markov process.Comment: Published at http://dx.doi.org/10.1214/009117904000000757 in the
Annals of Probability (http://www.imstat.org/aop/) by the Institute of
Mathematical Statistics (http://www.imstat.org