research

Asymptotically efficient triangulations of the d-cube

Abstract

Let PP and QQ be polytopes, the first of "low" dimension and the second of "high" dimension. We show how to triangulate the product P×QP \times Q efficiently (i.e., with few simplices) starting with a given triangulation of QQ. Our method has a computational part, where we need to compute an efficient triangulation of P×ΔmP \times \Delta^m, for a (small) natural number mm of our choice. Δm\Delta^m denotes the mm-simplex. Our procedure can be applied to obtain (asymptotically) efficient triangulations of the cube InI^n: We decompose In=Ik×InkI^n = I^k \times I^{n-k}, for a small kk. Then we recursively assume we have obtained an efficient triangulation of the second factor and use our method to triangulate the product. The outcome is that using k=3k=3 and m=2m=2, we can triangulate InI^n with O(0.816nn!)O(0.816^{n} n!) simplices, instead of the O(0.840nn!)O(0.840^{n} n!) achievable before.Comment: 19 pages, 6 figures. Only minor changes from previous versions, some suggested by anonymous referees. Paper accepted in "Discrete and Computational Geometry

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019