This is an expository paper. It is not difficult to see that every group
homomorphism from the additive group Z of integers to the additive group R of
real numbers extends to a homomorphism from R to R. We discuss other examples
of discrete subgroups D of connected Lie groups G, such that the homomorphisms
defined on D can ("virtually") be extended to homomorphisms defined on all of
G. For the case where G is solvable, we give a simple proof that D has this
property if it is Zariski dense. The key ingredient is a result on the
existence of syndetic hulls.Comment: 17 pages. This is the final version that will appear in the volume
"Rigidity in Dynamics and Geometry," edited by M. Burger and A. Iozzi
(Springer, 2002