research

Spectral Radii of Bounded Operators on Topological Vector Spaces

Abstract

In this paper we develop a version of spectral theory for bounded linear operators on topological vector spaces. We show that the Gelfand formula for spectral radius and Neumann series can still be naturally interpreted for operators on topological vector spaces. Of course, the resulting theory has many similarities to the conventional spectral theory of bounded operators on Banach spaces, though there are several important differences. The main difference is that an operator on a topological vector space has several spectra and several spectral radii, which fit a well-organized pattern.Comment: 36 page

    Similar works

    Full text

    thumbnail-image

    Available Versions