Under the condition of detailed balance and some additional restrictions on
the size of the coefficients, we identify the equilibrium distribution to which
solutions of the discrete coagulation-fragmentation system of equations
converge for large times, thus showing that there is a critical mass which
marks a change in the behavior of the solutions. This was previously known only
for particular cases as the generalized Becker-D\"oring equations. Our proof is
based on an inequality between the entropy and the entropy production which
also gives some information on the rate of convergence to equilibrium for
solutions under the critical mass.Comment: 28 page