research

Uniqueness of Gibbs states of a quantum system on graphs

Abstract

Gibbs states of an infinite system of interacting quantum particles are considered. Each particle moves on a compact Riemannian manifold and is attached to a vertex of a graph (one particle per vertex). Two kinds of graphs are studied: (a) a general graph with locally finite degree; (b) a graph with globally bounded degree. In case (a), the uniqueness of Gibbs states is shown under the condition that the interaction potentials are uniformly bounded by a sufficiently small constant. In case (b), the interaction potentials are random. In this case, under a certain condition imposed on the probability distribution of these potentials the almost sure uniqueness of Gibbs states has been shown.Comment: 9 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020