In this paper we investigate the theta vector and quantum theta function over
noncommutative T^4 from the embedding of R x Z^2. Manin has constructed the
quantum theta functions from the lattice embedding into vector space (x finite
group). We extend Manin's construction of the quantum theta function to the
embedding of vector space x lattice case. We find that the holomorphic theta
vector exists only over the vector space part of the embedding, and over the
lattice part we can only impose the condition for Schwartz function. The
quantum theta function built on this partial theta vector satisfies the
requirement of the quantum theta function. However, two subsequent quantum
translations from the embedding into the lattice part are non-additive,
contrary to the additivity of those from the vector space part.Comment: 20 pages, LaTeX, version to appear in J. Phys.