research

Quantum Thetas on Noncommutative T^4 from Embeddings into Lattice

Abstract

In this paper we investigate the theta vector and quantum theta function over noncommutative T^4 from the embedding of R x Z^2. Manin has constructed the quantum theta functions from the lattice embedding into vector space (x finite group). We extend Manin's construction of the quantum theta function to the embedding of vector space x lattice case. We find that the holomorphic theta vector exists only over the vector space part of the embedding, and over the lattice part we can only impose the condition for Schwartz function. The quantum theta function built on this partial theta vector satisfies the requirement of the quantum theta function. However, two subsequent quantum translations from the embedding into the lattice part are non-additive, contrary to the additivity of those from the vector space part.Comment: 20 pages, LaTeX, version to appear in J. Phys.

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019