The Hankel determinant representations for the partition function and
boundary correlation functions of the six-vertex model with domain wall
boundary conditions are investigated by the methods of orthogonal polynomial
theory. For specific values of the parameters of the model, corresponding to
1-, 2- and 3-enumerations of Alternating Sign Matrices (ASMs), these
polynomials specialize to classical ones (Continuous Hahn, Meixner-Pollaczek,
and Continuous Dual Hahn, respectively). As a consequence, a unified and
simplified treatment of ASMs enumerations turns out to be possible, leading
also to some new results such as the refined 3-enumerations of ASMs.
Furthermore, the use of orthogonal polynomials allows us to express, for
generic values of the parameters of the model, the partition function of the
(partially) inhomogeneous model in terms of the one-point boundary correlation
functions of the homogeneous one.Comment: Talk presented by F.C. at the Short Program of the Centre de
Recherches Mathematiques: Random Matrices, Random Processes and Integrable
Systems, Montreal, June 20 - July 8, 200