Abstract

The evolution of the degenerate complex curve associated with the ensemble at a generic critical point is related to the finite time singularities of Laplacian Growth. It is shown that the scaling behavior at a critical point of singular geometry x3y2x^3 \sim y^2 is described by the first Painlev\'e transcendent. The regularization of the curve resulting from discretization is discussed.Comment: Based on a talk given at the conference on Random Matrices, Random Processes and Integrable Systems, CRM Montreal, June 200

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019