The evolution of the degenerate complex curve associated with the ensemble at
a generic critical point is related to the finite time singularities of
Laplacian Growth. It is shown that the scaling behavior at a critical point of
singular geometry x3∼y2 is described by the first Painlev\'e
transcendent. The regularization of the curve resulting from discretization is
discussed.Comment: Based on a talk given at the conference on Random Matrices, Random
Processes and Integrable Systems, CRM Montreal, June 200