We advocate for the systematic use of a symmetrized definition of time delay
in scattering theory. In two-body scattering processes, we show that the
symmetrized time delay exists for arbitrary dilated spatial regions symmetric
with respect to the origin. It is equal to the usual time delay plus a new
contribution, which vanishes in the case of spherical spatial regions. We also
prove that the symmetrized time delay is invariant under an appropriate mapping
of time reversal. These results are also discussed in the context of classical
scattering theory.Comment: 18 page