Given two spherically symmetric and short range potentials V0 and V_1 for
which the radial Schrodinger equation can be solved explicitely at zero energy,
we show how to construct a new potential V for which the radial equation can
again be solved explicitely at zero energy. The new potential and its
corresponding wave function are given explicitely in terms of V_0 and V_1, and
their corresponding wave functions \phi_0 and \phi_1. V_0 must be such that it
sustains no bound states (either repulsive, or attractive but weak). However,
V_1 can sustain any (finite) number of bound states. The new potential V has
the same number of bound states, by construction, but the corresponding
(negative) energies are, of course, different. Once this is achieved, one can
start then from V_0 and V, and construct a new potential \bar{V} for which the
radial equation is again solvable explicitely. And the process can be repeated
indefinitely. We exhibit first the construction, and the proof of its validity,
for regular short range potentials, i.e. those for which rV_0(r) and rV_1(r)
are L^1 at the origin. It is then seen that the construction extends
automatically to potentials which are singular at r= 0. It can also be extended
to V_0 long range (Coulomb, etc.). We give finally several explicit examples.Comment: 26 pages, 3 figure