The parametric equations of the surfaces on which highly resonant
quasi-periodic motions develop (lower-dimensional tori) cannot be analytically
continued, in general, in the perturbation parameter, i.e. they are not
analytic functions of the perturbation parameter. However rather generally
quasi-periodic motions whose frequencies satisfy only one rational relation
("resonances of order 1") admit formal perturbation expansions in terms of a
fractional power of the perturbation parameter, depending on the degeneration
of the resonance. We find conditions for this to happen, and in such a case we
prove that the formal expansion is convergent after suitable resummation.Comment: 40 pages, 6 figure