An inverse problem of wave propagation into a weakly laterally inhomogeneous
medium occupying a half-space is considered in the acoustic approximation. The
half-space consists of an upper layer and a semi-infinite bottom separated with
an interface. An assumption of a weak lateral inhomogeneity means that the
velocity of wave propagation and the shape of the interface depend weakly on
the horizontal coordinates, x=(x1,x2), in comparison with the strong
dependence on the vertical coordinate, z, giving rise to a small parameter
\e <<1. Expanding the velocity in power series with respect to \e, we
obtain a recurrent system of 1D inverse problems. We provide algorithms to
solve these problems for the zero and first-order approximations. In the
zero-order approximation, the corresponding 1D inverse problem is reduced to a
system of non-linear Volterra-type integral equations. In the first-order
approximation, the corresponding 1D inverse problem is reduced to a system of
coupled linear Volterra integral equations. These equations are used for the
numerical reconstruction of the velocity in both layers and the interface up to
O(\e^2).Comment: 12 figure