By a straightforward generalisation, we extend the work of Combescure from
rank-1 to rank-N perturbations. The requirement for the Floquet operator to be
pure point is established and compared to that in Combescure. The result
matches that in McCaw. The method here is an alternative to that work. We show
that if the condition for the Floquet operator to be pure point is relaxed,
then in the case of the delta-kicked Harmonic oscillator, a singularly
continuous component of the Floquet operator spectrum exists. We also provide
an in depth discussion of the conjecture presented in Combescure of the case
where the unperturbed Hamiltonian is more general. We link the physics
conjecture directly to a number-theoretic conjecture of Vinogradov and show
that a solution of Vinogradov's conjecture solves the physics conjecture. The
result is extended to the rank-N case. The relationship between our work and
the work of Bourget on the physics conjecture is discussed.Comment: 25 pages, published in Journal of Mathematical Physic