research

Colligative properties of solutions: II. Vanishing concentrations

Abstract

We continue our study of colligative properties of solutions initiated in math-ph/0407034. We focus on the situations where, in a system of linear size LL, the concentration and the chemical potential scale like c=ξ/Lc=\xi/L and h=b/Lh=b/L, respectively. We find that there exists a critical value \xit such that no phase separation occurs for \xi\le\xit while, for \xi>\xit, the two phases of the solvent coexist for an interval of values of bb. Moreover, phase separation begins abruptly in the sense that a macroscopic fraction of the system suddenly freezes (or melts) forming a crystal (or droplet) of the complementary phase when bb reaches a critical value. For certain values of system parameters, under ``frozen'' boundary conditions, phase separation also ends abruptly in the sense that the equilibrium droplet grows continuously with increasing bb and then suddenly jumps in size to subsume the entire system. Our findings indicate that the onset of freezing-point depression is in fact a surface phenomenon.Comment: 27 pages, 1 fig; see also math-ph/0407034 (both to appear in JSP

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 15/03/2019