research

Central potentials on spaces of constant curvature: The Kepler problem on the two-dimensional sphere S2S^2 and the hyperbolic plane H2H^2

Abstract

The Kepler problem is a dynamical system that is well defined not only on the Euclidean plane but also on the sphere and on the Hyperbolic plane. First, the theory of central potentials on spaces of constant curvature is studied. All the mathematical expressions are presented using the curvature \k as a parameter, in such a way that they reduce to the appropriate property for the system on the sphere S2S^2, or on the hyperbolic plane H2H^2, when particularized for \k>0, or \k<0, respectively; in addition, the Euclidean case arises as the particular case \k=0. In the second part we study the main properties of the Kepler problem on spaces with curvature, we solve the equations and we obtain the explicit expressions of the orbits by using two different methods: first by direct integration and second by obtaining the \k-dependent version of the Binet's equation. The final part of the article, that has a more geometric character, is devoted to the study of the theory of conics on spaces of constant curvature.Comment: 37 pages, 7 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019