By exploiting the properties of q-deformed Coxeter elements, the scattering
matrices of affine Toda field theories with real coupling constant related to
any dual pair of simple Lie algebras may be expressed in a completely generic
way. We discuss the governing equations for the existence of bound states, i.e.
the fusing rules, in terms of q-deformed Coxeter elements, twisted q-deformed
Coxeter elements and undeformed Coxeter elements. We establish the precise
relation between these different formulations and study their solutions. The
generalized S-matrix bootstrap equations are shown to be equivalent to the
fusing rules. The relation between different versions of fusing rules and
quantum conserved quantities, which result as nullvectors of a doubly
q-deformed Cartan like matrix, is presented. The properties of this matrix
together with the so-called combined bootstrap equations are utilised in order
to derive generic integral representations for the scattering matrix in terms
of quantities of either of the two dual algebras. We present extensive
case-by-case data, in particular on the orbits generated by the various Coxeter
elements.Comment: 57 page