The ubiquitous ADE classification has induced many proposals of often
mysterious correspondences both in mathematics and physics. The mathematics
side includes quiver theory and the McKay Correspondence which relates finite
group representation theory to Lie algebras as well as crepant resolutions of
Gorenstein singularities. On the physics side, we have the graph-theoretic
classification of the modular invariants of WZW models, as well as the relation
between the string theory nonlinear σ-models and Landau-Ginzburg
orbifolds. We here propose a unification scheme which naturally incorporates
all these correspondences of the ADE type in two complex dimensions. An
intricate web of inter-relations is constructed, providing a possible guideline
to establish new directions of research or alternate pathways to the standing
problems in higher dimensions.Comment: 35 pages, 4 figures; minor corrections, comments on toric geometry
and references adde