Abstract

A computational scheme is developed to determine the response of a quantum field theory (QFT) with a factorized scattering operator under a variation of the Unruh temperature. To this end a new family of integrable systems is introduced, obtained by deforming such QFTs in a way that preserves the bootstrap S-matrix. The deformation parameter \beta plays the role of an inverse temperature for the thermal equilibrium states associated with the Rindler wedge, \beta = 2\pi being the QFT value. The form factor approach provides an explicit computational scheme for the \beta \neq 2\pi systems, enforcing in particular a modification of the underlying kinematical arena. As examples deformed counterparts of the Ising model and the Sinh-Gordon model are considered.Comment: 34 pages, Latex, 3 Figures, minor change

    Similar works

    Available Versions

    Last time updated on 05/06/2019