CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
The transcriptional regulator TamR from Streptomyces coelicolor controls a key step in central metabolism during oxidative stress
Authors
Anne Grove
Hao Huang
Publication date
3 February 2013
Publisher
LSU Digital Commons
Doi
Abstract
Summary: Multiple antibiotic resistance regulator (MarR) family transcriptional regulators usually regulate gene activity by responding to specific ligands. Here we show that TamR (trans-aconitate methyltransferase regulator), a MarR homologue from Streptomyces coelicolor, functions in oxidative stress responses to regulate a key step in central metabolism. The gene encoding TamR is oriented divergently from the tam gene, which encodes trans-aconitate methyltransferase. Trans-aconitate methyltransferase methylates trans-aconitate, which is formed when cis-aconitate is released during aconitase-mediated isomerization of citrate to isocitrate; trans-aconitate, but not its methyl ester, is a potent inhibitor of aconitase. We show that TamR binds with high affinity to the intergenic region between the tamR and tam genes. Notably, trans-aconitate attenuates DNA-binding by TamR, as do citrate, cis-aconitate and isocitrate, which are the substrate, intermediate and product of aconitase respectively. In vivo, hydrogen peroxide and citrate induce significant upregulation of the tam (SCO3132), tamR (SCO3133) and aconitase (SCO5999) genes. Since oxidative stress leads to disassembly of the [4Fe-4S] cluster that is essential for aconitase activity, resulting in accumulation of citrate and release of cis-aconitate and its subsequent conversion to trans-aconitate, we propose that TamR mediates a novel regulatory function in which the inhibitory effects of trans-aconitate and accumulated citrate are alleviated. © 2013 Blackwell Publishing Ltd
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1111%2Fmmi.12156
Last time updated on 20/04/2021
LSU Scholarly Repository (Louisiana State Univ.)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:repository.lsu.edu:biosci_...
Last time updated on 26/10/2023