research

Generalization of Weierstrassian Elliptic Functions to Rn{\bf R}^{n}

Abstract

The Weierstrassian ,ζ\wp, \zeta and σ\sigma functions are generalized to Rn{\bf R}^{n}. The n=3n=3 and n=4n=4 cases have already been used in gravitational and Yang-Mills instanton solutions which may be interpreted as explicit realizations of spacetime foam and the monopole condensate, respectively. The new functions satisfy higher dimensional versions of the periodicity properties and Legendre's relations obeyed by their familiar complex counterparts. For n=4n=4, the construction reproduces functions found earlier by Fueter using quaternionic methods. Integrating over lattice points along all directions but two, one recovers the original Weierstrassian elliptic functions.Comment: pp. 9, Late

    Similar works

    Available Versions

    Last time updated on 11/12/2019