research

Second Quantization of the Wilson Loop

Abstract

Treating the QCD Wilson loop as amplitude for the propagation of the first quantized particle we develop the second quantization of the same propagation. The operator of the particle position X^μ\hat{\cal X}_{\mu} (the endpoint of the "open string") is introduced as a limit of the large NN Hermitean matrix. We then derive the set of equations for the expectation values of the vertex operators \VEV{ V(k_1)\dots V(k_n)} . The remarkable property of these equations is that they can be expanded at small momenta (less than the QCD mass scale), and solved for expansion coefficients. This provides the relations for multiple commutators of position operator, which can be used to construct this operator. We employ the noncommutative probability theory and find the expansion of the operator X^μ\hat{\cal X}_\mu in terms of products of creation operators aμ† a_\mu^{\dagger}. In general, there are some free parameters left in this expansion. In two dimensions we fix parameters uniquely from the symplectic invariance. The Fock space of our theory is much smaller than that of perturbative QCD, where the creation and annihilation operators were labelled by continuous momenta. In our case this is a space generated by d=4d = 4 creation operators. The corresponding states are given by all sentences made of the four letter words. We discuss the implication of this construction for the mass spectra of mesons and glueballs.Comment: 41 pages, latex, 3 figures and 3 Mathematica files uuencode

    Similar works

    Available Versions

    Last time updated on 03/01/2020