We show that the Ashtekar-Isham extension of the classical configuration
space of Yang-Mills theories (i.e. the moduli space of connections) is
(topologically and measure-theoretically) the projective limit of a family of
finite dimensional spaces associated with arbitrary finite lattices. These
results are then used to prove that the classical configuration space is
contained in a zero measure subset of this extension with respect to the
diffeomorphism invariant Ashtekar-Lewandowski measure.
Much as in scalar field theory, this implies that states in the quantum
theory associated with this measure can be realized as functions on the
``extended" configuration space.Comment: 22 pages, Tex, Preprint CGPG-94/3-