research

Dynamical Moving Mirrors and Black Holes

Abstract

A simple quantum mechanical model of NN free scalar fields interacting with a dynamical moving mirror is formulated and shown to be equivalent to two-dimensional dilaton gravity. We derive the semi-classical dynamics of this system, by including the back reaction due to the quantum radiation. We develop a hamiltonian formalism that describes the time evolution as seen by an asymptotic observer, and write a scattering equation that relates the in-falling and out-going modes at low energies. At higher incoming energy flux, however, the classical matter-mirror dynamics becomes unstable and the mirror runs off to infinity. This instability provides a useful paradigm for black hole formation and introduces an analogous information paradox. Finally, we propose a new possible mechanism for restoring the stability in the super-critical situation, while preserving quantum coherence. This mechanism is based on the notion of an effective time evolution, that takes into account the quantum mechanical effect of the measurement of the Hawking radiation on the state of the infalling matter.Comment: 37 pages, 5 figures attached, epsf, harvmac, PUPT-143

    Similar works