research

Quantum Affine Lie Algebras, Casimir Invariants and Diagonalization of the Braid Generator

Abstract

Let Uq(G^)U_q(\hat{\cal G}) be an infinite-dimensional quantum affine Lie algebra. A family of central elements or Casimir invariants are constructed and their eigenvalues computed in any integrable irreducible highest weight representation. These eigenvalue formulae are shown to absolutely convergent when the deformation parameter qq is such that q>1|q|>1. It is proven that the universal R-matrix RR of Uq(G^)U_q(\hat{\cal G}) satisfies the celebrated conjugation relation R=TRR^\dagger=TR with TT the usual twist map. As applications, the braid generator is shown to be diagonalizable on arbitrary tensor product modules of integrable irreducible highest weight Uq(G^)U_q(\hat{\cal G})-modules and a spectral decomposition formula for the braid generator is obtained which is the generalization of Reshetikhin's and Gould's forms to the present affine case. Casimir invariants acting on a specified module are also constructed and their eigenvalues, again absolutely convergent for q>1|q|>1, computed by means of the spectral decomposition formula.Comment: 22 pages (many changes are made

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019