We introduce the notion of a braided Lie algebra consisting of a
finite-dimensional vector space \CL equipped with a bracket $[\ ,\
]:\CL\tens\CL\to \CLandaYang−Baxteroperator\Psi:\CL\tens\CL\to
\CL\tens\CLobeyingsomeaxioms.Weshowthatsuchanobjecthasanenvelopingbraided−bialgebraU(\CL).WeshowthateverygenericR−matrixleadstosuchabraidedLiealgebrawith[\ ,\ ]givenbystructureconstantsc^{IJ}{}_KdeterminedfromR.InthiscaseU(\CL)=B(R)thebraidedmatricesintroducedpreviously.WealsointroducethebasictheoryofthesebraidedLiealgebras,includingthenaturalright−regularactionofabraided−Liealgebra\CLbybraidedvectorfields,thebraided−KillingformandthequadraticCasimirassociatedto\CL.Theseconstructionsrecovertherelevantnotionsforusual,colourandsuper−Liealgebrasasspecialcases.Inaddition,thestandardquantumdeformationsU_q(g)areunderstoodastheenvelopingalgebrasofsuchunderlyingbraidedLiealgebraswith[\ ,\ ]on\CL\subset
U_q(g)$ given by the quantum adjoint action.Comment: 56 page