Abstract

The space of all solutions to the string equation of the symmetric unitary one-matrix model is determined. It is shown that the string equation is equivalent to simple conditions on points V1V_1 and V2V_2 in the big cell \Gr of the Sato Grassmannian GrGr. This is a consequence of a well-defined continuum limit in which the string equation has the simple form \lb \cp ,\cq_- \rb =\hbox{\rm 1}, with \cp and \cq_- 2×22\times 2 matrices of differential operators. These conditions on V1V_1 and V2V_2 yield a simple system of first order differential equations whose analysis determines the space of all solutions to the string equation. This geometric formulation leads directly to the Virasoro constraints \L_n\,(n\geq 0), where \L_n annihilate the two modified-KdV \t-functions whose product gives the partition function of the Unitary Matrix Model.Comment: 21 page

    Similar works