For a large enough Schwarzschild black hole, the horizon is a region of space
where gravitational forces are weak; yet it is also a region leading to
numerous puzzles connected to stringy physics. In this work, we analyze the
process of gravitational collapse and black hole formation in the context of
light-cone M theory. We find that, as a shell of matter contracts and is about
to reveal a black hole horizon, it undergoes a thermodynamic phase transition.
This involves the binding of D0 branes into D2's, and the new phase leads to
large membranes of the size of the horizon. These in turn can sustain their
large size through back-reaction and the dielectric Myers effect - realizing
the fuzzball proposal of Mathur and the Matrix black hole of M(atrix) theory.
The physics responsible for this phenomenon lies in strongly coupled 2+1
dimensional non-commutative dynamics. The phenomenon has a universal character
and appears generic.Comment: 24 pages, 4 figures; v2: minor clarifications, citations adde