During the last years a wide range of algorithms
and devices have been made available to easily acquire range
images. The increasing abundance of depth data boosts
the need for reliable and unsupervised analysis techniques,
spanning from part registration to automated segmentation.
In this context, we focus on the recognition of known objects
in cluttered and incomplete 3D scans. Locating and fitting a
model to a scene are very important tasks in many scenarios
such as industrial inspection, scene understanding, medical
imaging and even gaming. For this reason, these problems
have been addressed extensively in the literature. Several
of the proposed methods adopt local descriptor-based
approaches, while a number of hurdles still hinder the use
of global techniques. In this paper we offer a different
perspective on the topic: We adopt an evolutionary selection
algorithm that seeks global agreement among surface points,
while operating at a local level. The approach effectively
extends the scope of local descriptors by actively selecting
correspondences that satisfy global consistency constraints,
allowing us to attack a more challenging scenario where
model and scene have different, unknown scales. This leads
to a novel and very effective pipeline for 3D object recognition,
which is validated with an extensive set of experiment